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Abstract

With the help of a 2D theoretical model, this paper analyses the modes of matrix detachment around a circular–elliptical rigid inclusion

under pure and simple shear bulk deformations. Three modes of matrix detachment are possible: Mode 1—the matrix is displaced normal to

the inclusion boundary, forming fissures at the interface; Mode 2—the matrix slips along the inclusion boundary without any separation;

Mode 3—the detachment occurs by a combination of Modes 1 and 2. In order to determine the onset of detachment at any point on the

coherent inclusion–matrix interface, the tensile and shear stresses were derived at that point, and compared with imposed critical values.

Numerical simulations based on the theoretical model reveal that the three modes occur systematically along the inclusion–matrix interface,

the geometrical dispositions of which depend on the aspect ratio (R ) and orientation (f ) of the inclusion. In the case of circular inclusions,

Mode 1 and Mode 2 domains are separated by a Mode 3 domain and the disposition shows an internal symmetry. On the other hand, it is

asymmetrical when the inclusions are elliptical and oriented oblique to the bulk extension direction in pure shear and to the shear direction in

simple shear. In simple shear, Mode 2 detachment with synthetic slip occurs dominantly when f is less than 458 and greater than 1358. The

results obtained from numerical models are complemented with observations in physical experiments. The paper also determines

theoretically the critical stresses for detachment to occur as a function of R for different f values, revealing that for a given mechanical

strength of the inclusion–matrix interface, a particular mode of detachment can take place only when the aspect ratio crosses a threshold

value.

q 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In a rock system containing rigid inclusions, the

inclusion–matrix interface may be coherent or incoherent

during deformation (Ramsay and Huber, 1983, p. 265). In

the case of an incoherent interface the matrix may be

separated from the inclusion or slip along the interface.

Models of the heterogeneous flow field around rigid

inclusions and development of inclusion-related structures

such as drag folds, porphyroclast tails, porphyroblast

inclusion trails, strain shadows etc. are based on coherent

(non-slip) or incoherent (slip) matrix–inclusion interfaces

(Gay, 1968; Masuda and Ando, 1988; Bjornerud, 1989;

Passchier, 1994; Bjornerud and Zhang, 1995; Masuda and

Mizuno, 1996; Ramsay and Lisle, 2000; Mandal et al.,

2001a). Theoretical and experimental studies suggest that

the assumption of the mechanical condition at the

inclusion–matrix interface could significantly influence

the pattern of heterogeneous deformation around the

inclusion (Ildefonse and Mancktelow, 1993; Kenkmann

and Dresen, 1998; Pennacchioni et al., 2000; Mancktelow

et al., 2002). This in turn is likely to modify the

development of various inclusion-related structures. For

example, the pattern of mantle structures around rigid

porphyroclasts changes from s to d type with increase in the

degree of coherence between the porphyroclast and the

matrix (Bjornerud and Zhang, 1995).

Studies mentioned above deal with the effect of

inclusion–matrix coherence on the deformation around

the inclusions. However, how the coherence at the

inclusion–matrix interface is lost leading to detachment is

yet to be investigated in detail. This paper analyses

development of detachments under the heterogeneous stress

field in the neighbourhood of an inclusion. It can be shown

that the detachment may occur principally in three modes

(Fig. 1). Mode 1: the matrix gets detached from the

inclusion with displacement normal to the inclusion–matrix

interface, forming fissures at the interface (cf. Ramsay and

Huber, 1983, p. 265). Mode 2: the matrix slips along the
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surface of the inclusion without any creation of gap. Mode

3: the matrix detachment occurs by a combination of Modes

1 and 2. These three contrasting modes of detachment are

demonstrated in simple physical model experiments. With

the help of a 2D theory, the traction that develops at the

inclusion–matrix interface in response to the heterogeneous

flow around the inclusion are determined in order to analyse

the three modes of detachment under simple and pure shear

deformations. Numerical simulations based on the theory

were performed to reveal the distribution of different modes

of detachment around the inclusion as a function of its shape

and orientation.

2. Theoretical analysis

The presence of an inclusion leads to a heterogeneous

flow field around the inclusion, which in turn exerts traction

on the surface of the inclusion. The inclusion–matrix

interface becomes locally incoherent where the traction

reaches the (adhesive) strength of coherence between the

inclusion and matrix. Thus, formulation of the traction

acting along the inclusion–matrix interface is the funda-

mental step for analysing the conditions of inclusion–

matrix detachment. In order to do this, we have adopted

Jeffery’s (1922) theory that describes the flow field around

an ellipsoidal inclusion. However, in the present study, for

the sake of simplicity, the analysis is made in two

dimensions, considering a single, elliptical inclusion float-

ing in an infinitely extended ductile matrix. An outline of the

analysis is given below.

Consider an elliptical inclusion with semi-axes a and b,

within a viscous matrix undergoing a general deformation

by a combination of pure shear and simple shear at rates, _eb

and _gb. A Cartesian reference, oxy, is chosen with the origin

at the centre of the inclusion and x-axis parallel to the bulk

shear direction (Fig. 2). The principal extension of the pure

shear component is assumed to be oriented along the x-axis.

The long axis of the inclusion is oriented at angle f with the

shear direction. We consider another reference, ox0y0, with

the x0-axis fixed to the a-axis of the inclusion. Now, with

respect to oxy the bulk strain-rate tensor can be represented

by the following matrix:

e ij ¼
_eb _gb=2

_gb=2 2 _eb

" #
ð1Þ

The Eigen values of the matrix give the principal strain rates

in the flow as:

_ep ¼ ^
1

2
_gb

ffiffiffiffiffiffiffiffiffiffi
1 þ 4S2

r

q
ð2Þ

Fig. 1. Modes of matrix detachment around rigid inclusions (details in text).

Fig. 2. Consideration of Cartesian co-ordinate frames for theoretical

analysis. Ts is the traction vector at a point on the surface of the inclusion

and Tx0 and Ty0 are its components along the axial directions of the

inclusion.
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where Sr ¼ _eb= _gb, the ratio of pure and simple shear rates. In

this analysis we require a transformation of the tensor in Eq.

(1) with respect to ox0y0. From the rule of second-rank tensor

transformation, it follows that:

Spq ¼ lpilqje ij; ð3Þ

where Sij is the strain-rate tensor with respect to ox0y0 and

lij ¼
cosf sinf

2sinf cosf

" #
ð4Þ

From Eqs. (3) and (4), we have the components of Sij as:

s11 ¼ gb Srcos2fþ
1

2
sin2f

� �
ð5aÞ

s22 ¼ 2gb Srcos2fþ
1

2
sin2f

� �
ð5bÞ

s12 ¼ gb

1

2
cos2f2 Srsin2f

� �
ð5cÞ

The viscous flow in the matrix develops traction on the

surface of the inclusion. At any point the traction vector Ts

can be given by:

Ts ¼
Tx0

Ty0

" #
ð6Þ

where Tx0 and Ty0 are the components of the traction parallel

to the axial directions of the inclusion (Fig. 2). Following

Jeffery’s (1922) theory, their expressions can be written as:

Tx0 ¼ P L
x0

a2
þ M

y0

b2

� �
ð7aÞ

Ty0 ¼ P M0 x0

a2
þ L0 y0

b2

� �
ð7bÞ

where

1

P2
¼

x02

a4
þ

y02

b4
:

The expressions of the constants in Eqs. (7a) and (7b) follow

(after Mandal et al., 2001b):

L ¼ 2po þ 4h
2

ab
2 ao 2 bo

� �	 

A; M ¼

8h

ab
H

L0 ¼ 2po 2 4h
2

ab
þ ao 2 bo

� �	 

A; M0 ¼

8h

ab
H 0 ð8Þ

where po and v are the confining pressure and the co-

efficient of viscosity of the matrix, respectively. In Eq. (8)

the expressions of the parameters are:

A ¼
S11

2½ðao þ boÞ2 ða2 þ b2Þgo�

H ¼
aoS12 2 gob2ðSw 2 vÞ

2ðaoa2 þ bob2Þgo

H 0 ¼
boS12 þ goa2ðSw 2 vÞ

2ðaoa2 þ bob2Þgo

ð9Þ

where v is the instantaneous rate of rotation of the inclusion,

the expression of which is (Eq. (39) of Jeffery, 1922):

v ¼
a2 Sw þ S12

� �
þ b2 Sw 2 S12

� �
a2 þ b2

ð10Þ

Sw ¼ _gb=2, the rotation component of the bulk flow:

ao ¼
2

aða þ bÞ
; bo ¼

2

bða þ bÞ
and go ¼

2

abða þ bÞ2
ð11Þ

The derivations of Eqs. (8)–(11) can be found in Mandal

et al. (2001b). After some algebraic manipulations of these

equations, the expressions of the constants in Eqs. (7a) and

(7b) are obtained:

L ¼ 2po þ 2h
a þ b

b

� �
S11

L0 ¼ 2po 2 2h
a þ b

a

� �
S11

M ¼ M0 ¼ 2h
a þ bð Þ2

a2 þ b2
S12 ð12Þ

We shall now consider the traction components normalised

to the bulk flow stress, and rewrite Eqs. (7a) and (7b) as:

Tp
x0 ¼ P Lp x0

a2
þ Mp y0

b2

� �

Tp
y0 ¼ P M0p

x0

a2
þ L0p

y0

b2

� �
ð13Þ

where

Lp ¼
L

2h _ep

; L0p ¼
L0

2h _ep

and Mp ¼ M0p ¼
M

2h _ep

ð14Þ

Replacing the expressions of L, L0 and M0 and _ep in Eq. (14),

and after some simplifications, we have:

Lp ¼ 2pp
o þ 1 þ Rð Þ

sin2fþ 2Srcos2fffiffiffiffiffiffiffiffiffiffi
1 þ 4S2

r

p

Lp ¼ 2pp
o 2 1 þ

1

R

� �
sin2fþ 2Srcos2fffiffiffiffiffiffiffiffiffiffi

1 þ 4S2
r

p

Mp ¼
R þ 1ð Þ2

R2 þ 1

cos2f2 2Srsin2fffiffiffiffiffiffiffiffiffiffi
1 þ 4S2

r

p ð15Þ

where R is the aspect ratio of the inclusion. Eqs. (13) and

(15) indicate that the aspect ratio R and the orientation f of

the inclusion are the principal parameters governing the

traction of the matrix on the surface of the inclusion. Now,

the normal (sn) and shear (st) stress components at any

point on the surface of the inclusion can be obtained from
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the traction vector by using the following equation:

sp
t

sp
n

" #
¼

cosu sinu

2sinu cosu

" #
Tp

x0

Tp
y0

2
4

3
5 ð16Þ

where u is the slope of the tangent to the inclusion boundary,

the expression of which follows:

u ¼ 2tan21 b2

a2

x0

y0

 !
ð17Þ

It is evident from Eqs. (13)–(17) that the normal and

shear stress components acting on the inclusion–matrix

interface will be different at different points, and result in

detachment between the inclusion and matrix where their

values exceed the strength of cohesion between the matrix

and inclusion. In our analysis we express the mechanical

strength of the inclusion–matrix interface by tensile

strength (To) and shear strength (So) independently. The

dynamic conditions of the three modes of detachment are:

Mode 1: when sp
n . Tp

o , sp
t , Sp

o

Mode 2: when sp
n , Tp

o , sp
t . Sp

o

Mode 3: when sp
n . Tp

o , sp
t . Sp

o

Sp
o and Tp

o are the shear and tensile strengths of the

inclusion–matrix interface normalised to the bulk flow

stress. By imposing the above conditions we ran numerical

experiments by using the traction functions (Eq. (13)) for

different shapes and orientations of the inclusion to

investigate how detachment occurs at the inclusion–matrix

interface. The results are discussed in the following

sections.

3. Detachment in numerical models

3.1. Method of simulation

A computer program was developed in Visual Basic to

compute the stress components acting on the surface of the

inclusion, and to find the points satisfying the dynamic

conditions for the three modes of detachment stated in the

previous section. In the initial model short radial lines were

drawn across the inclusion boundary to reveal the domains

of detachment along the inclusion–matrix interface. The

magnitude of relative displacement between two adjacent

points on either side of the interface was assumed to be

directly proportional to the magnitudes of the stress

components acting at that point. Experiments were

conducted separately under pure shear (Sr ¼ 1), simple

shear (Sr ¼ 0) and Sp
o ¼ Tp

o ¼ 1. In the following sections

we present results obtained from pure and simple shear

experiments.

3.2. Detachment patterns

A set of numerical simulations was performed under pure

shear by varying the initial orientation (f ) of inclusion for

different values of the aspect ratio R.

Circular inclusions (R ¼ 1): the inclusions show detach-

ment over a large area, leaving a small intact area of the

inclusion–matrix interface facing to the principal short-

ening direction. The detachment area consists of symme-

trically disposed fissures on either side of the inclusion

along the bulk extension direction, and slip zones (Mode 2)

in the transition between the intact interface and the fissures

(Fig. 3a). The central parts of the fissures have developed by

Mode 1 detachment, whereas their fringes show Mode 3

detachment (Fig. 3b).

Elliptical inclusions (R . 1): sets of experiments were

performed by varying the initial orientation (f ) of

inclusion, keeping the aspect ratio (R ) constant. In the

case of R ¼ 2 and f ¼ 0 Mode 1 (fissure) detachment

occurs symmetrically on its either side (Fig. 4a), as noticed

in many naturally deformed rocks. The locales of Mode 1

detachment are flanked by locales of Mode 3 and Mode 2

detachment (Fig.4a). When the inclusion is obliquely

oriented with respect to the bulk extension direction,

Fig. 3. (a) Pattern of matrix detachment around a circular inclusion in

numerical model under pure shear. (b) Calculated plots showing the

disposition of the three modes of detachment (shaded) and intact interface

(blank).
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fissures are asymmetrical, and located away from the long

axis of the inclusion as well as the line parallel to the bulk

extension direction and passing through the inclusion centre

(Fig. 4b). The positional deviation of the fissures from the

long axis of the inclusion is more pronounced as the

inclination of the inclusion becomes large (Fig. 4c). In

addition, the maximum separation between the matrix and

inclusion decreases, and becomes a minimum when the

inclusion is oriented with its long axis at a right angle to the

bulk extension direction (Fig. 4d). However, in the latter

case the fissures are symmetrical, with the line of maximum

opening along the short axis. In the detachment zone there

occurs two diametrically opposite points on either side of

which the sense of slip (Modes 2 and 3) show reversal (Fig.

4). The matrix remains attached to the inclusion in particular

locales, the positions of which also vary with the inclusion

orientation f (Fig. 4).

We computed numerically the surface area of locales

of each mode of detachment as a function of inclusion

orientation f. The plot for R ¼ 2 shows that the area of

Mode 1 detachment varies monotonically with f, and

reaches a maximum value at f ¼ 908, and then decreases

down to a minimum at f ¼ 1808 (Fig. 5a). On the other

hand, the variation in the area of slip (Mode 2)

detachment shows ups and downs, showing maximum

and minimum values at f ¼ 60 and 1208, respectively.

The area of intact inclusion–matrix interface is a

maximum when the inclusion is oriented parallel to the

bulk extension direction (f ¼ 0), and progressively

shrinks to a minimum when it becomes at a right

angle to the extension direction (f ¼ 908). The plot

overall indicates that, compared with Mode 1, slip

detachment (Mode 2) occurs over a larger area of the

inclusion–matrix interface.

Fig. 5b–d illustrates the effects of aspect ratio (R ) on the

variations of detachment areas versus inclusion orientation

(f ). For R $ 5, the area of Mode 1 detachment attains a

peak value at f ¼ 458, and then decreases down to zero in a

small range off near 608, and finally varies steeply to reach

a maximum peak value at f ¼ 908 (Fig. 5c). The interface

area involving Mode 2 detachment shows peak values at

f ¼ 45 and 1358, which becomes progressively higher with

increasing aspect ratio. These variations suggest that the

detachment will take place solely in Mode 2 if the inclusion

is oriented close to 60 or 1208 with respect to the bulk

extension direction. For R $ 10, the area of Mode 1

detachment overall becomes much less compared with

that of Mode 2 detachment, unless the inclusion is oriented

at a high angle (75–1058) to the bulk extension direction

(Fig. 5d). In addition, when the inclusion is oriented in the

Fig. 4. Matrix detachment around elliptical inclusions in numerical models under pure shear. (a) f ¼ 0; (b) f ¼ 308; (c) f ¼ 608 and (d) f ¼ 908. f: initial

inclination of the long axis of the inclusion to the bulk extension direction. Aspect ratio of inclusion (R ) ¼ 2.
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ranges of 60–758 and 105–1208, Mode 1 does not occur and

the detachment takes place essentially in Mode 2.

We carried out another set of similar experiments under

simple shear with circular (Fig. 6) and elliptical inclusions

varying the initial inclination of the long axis of inclusion to

the shear direction (f ) (Fig. 7). The experiments show that

the detachment pattern for a given value of f is similar to

that obtained in pure shear with inclusion orientation

f 2 458 to the bulk extension direction. However, this

similarity is likely to be maintained for infinitesimal strains.

Here we discuss only those aspects of numerical models that

are pertinent to simple shear motion.

Circular inclusions (R ¼ 1): Mode 1 detachment gives

rise to symmetrical fissures on either side of the inclusion

with the line of maximum opening oriented at an angle of

458 with the bulk shear direction (Fig. 6a). There are small

parts on the inclusion boundary facing to the contraction

field where the matrix remains attached to the inclusion. The

sense of slip (Mode 2 detachment) on either side of it is

synthetic and antithetic to the bulk shear sense (Fig. 6b).

Elliptical (R ¼ 2) inclusions: when f ¼ 0, Mode 2

detachment occurs over a major part of the inclusion

boundary where the sense of slip is synthetic to that of the

bulk shear (Fig. 7a). The matrix remains attached to the

inclusion on two domains on either side of the inclusion

located near the central shear plane. This intact part

separates locales of Mode 2 detachment with synthetic

and antithetic sense of slip. In the fissures Mode 3 operates

on its either fringe with opposite sense of slip. Mode 2

detachment showing slip synthetic to bulk shear is dominant

when the inclusion orientation f is less than 458 or greater

than 1358 (Fig. 7a, b and f). On the other hand, for

458 , f , 1358, Mode 2 with antithetic slip occurs

dominantly at the interface (Fig. 7c–e).

The area of each mode of detachment at the inclusion–

matrix interface is a function of inclusion orientation with

respect to the shear direction, as in pure shear models. Fig. 8

shows the variations in the areas of the different modes with

inclusion orientation (f ) for different aspect ratios (R ).

3.3. Fields of detachment modes

For given mechanical strength of the inclusion–matrix

interface, detachment cannot occur unless the inclusions

attain a critical aspect ratio (R ) or orientation (f ) with

respect to the bulk flow direction. With the help of Eqs. (13)

and (15) critical R or f values were calculated and plotted as

a function of the normalised values of tensile and shear

strengths of the interface to find out the field of detachment

in a R 2 Tp
o , Sp

o space.

The plots (Fig. 9) show that circular inclusions (R ¼ 1) in

pure shear experience detachment with the matrix when the

Fig. 5. Calculated plots showing variations in the area of fissure (Mode 1), slip (Mode 2) detachment and intact interface around an inclusion with its initial

orientation f. Bulk deformation is in pure shear. R: aspect ratio of inclusion. The area of Mode 3 is not shown here.
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normalised values of Sp
o and Tp

o are less than two. That

means, the strengths of the inclusion–matrix interface

should not be greater than twice the bulk flow stress. On the

other hand, when the inclusion is elliptical, the critical

aspect ratios for Mode 1 and Mode 2 detachment to occur

are functions of Tp
o and Sp

o, respectively, describing their

fields in R versus Sp
o, Tp

o space (Fig. 9). The relations

between R and So and To is different for different

inclinations of the inclusion (f ) with the bulk extension

direction (Fig. 9a–d). When f ¼ 0 (Fig. 9a), both of them

show more or less linear variations, indicating that the

higher the mechanical strength of the inclusion–matrix

interface the higher the critical aspect ratios are required for

detachment to occur. The plots define a field delimiting the

conditions in which detachment can occur solely in Mode 1,

giving rise to fissures without any slip (Mode 2 detachment)

between the inclusion and matrix. The plots also reveal the

conditions favouring both Mode 1 and Mode 2 detachment,

as observed in numerical models. It is found that for

inclusion aspect ratio less than 10 the two modes of

detachment can take place around an inclusion if Sp
o and Tp

o

values are less than about five. When f ¼ 458 (Fig. 9b) the

curves delimiting the fields of Mode 1 and Mode 2

detachment coincide with each other. They are non-linear,

showing in overall negative gradients. The plots thus imply

that detachment will essentially involve both Mode 1 and

Mode 2, if the tensile and shear strengths of the inclusion–

matrix interface are equal. Secondly, the critical aspect ratio

required for detachment is inversely related to the

mechanical strength of the interface. The two curves split

from each other, as the inclusion orientation is larger than

458 (Fig. 9c). However, in contrast to the earlier case (i.e.

f , 458), the curve representing the critical conditions

required for Mode 2 detachment lies above that of Mode 1,

and the two curves thus define a field exclusively for Mode

2. The plots also reveal that, if the inclusion orientation is

larger than 458 Mode 1 detachment can occur in inclusions

irrespective of their aspect ratio when Tp
o , 2 (Fig. 9d).

We made a similar analysis of the fields for Mode 1 and

Mode 2 detachment under simple shear deformation. The

field patterns depend on the inclusion orientation to the

simple shear direction. It was noticed that the results in

simple shear for a certain inclusion orientation, say f to the

shear direction are identical to those in pure shear with

inclination f 2 458 to the bulk extension direction.

4. Physical experiments

Simple physical model experiments were conducted

under pure and simple shear to test the modes of inclusion–

matrix detachment that are revealed from numerical

simulations. The model consisted of a circular or elliptic

cylindrical inclusion (rigid wax) hosted in a ductile matrix

(putty with viscosity in the order of 104 Pa s). The cross-

sectional face of the inclusion was exposed to the top

surface of the putty block. The axis of the cylindrical

inclusion was oriented along the axis of no-strain in the

model. A set of parallel, passive marker lines was drawn

across the inclusion and matrix interface to reveal the nature

of detachment at the interface. Numerical simulations

described in the previous sections indicate that the shape

and orientation of inclusion and the mechanical strength of

the inclusion–matrix interface are the principal parameters

controlling the detachment pattern at the inclusion–matrix

interface. In physical experiments we investigated only the

effects of the first two geometrical factors.

Pure shear experiments with circular inclusions devel-

oped fissure (Mode 1) detachment on either side of the

inclusion located along the central line parallel to the bulk

extension direction and purely slip (Mode 2) detachment on

either side of the fissures, as revealed from the offsetting of

the markers (Fig. 10). This pattern of different modes of

detachment around an inclusion matches that obtained from

the numerical simulation (Fig. 10a). Elongate inclusions

show varying detachment patterns with their initial

inclusion orientation (Fig. 10b and c), and the nature of

variation is consistent with that observed in numerical

models (Fig. 4). Inclusions oriented parallel to the bulk

extension direction developed symmetrical fissures (Mode 1)

Fig. 6. (a) Pattern of detachment around circular inclusion in numerical

model under simple shear. (b) Locales of Mode 2 detachment with opposite

senses of slip on either side of the fissure detachment.
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of relatively small area, but large opening on either side of

the inclusion (Fig. 10b). The fissures were located along the

line parallel to the extension direction and passing to the

inclusion centre. Slip detachment occurs over relatively a

large area of the inclusion–matrix interface, compared with

that around circular inclusions. Inclusions oriented oblique

to the extension direction developed fissures with the lines

of maximum opening located away from the long axis of the

inclusion as well as the central line parallel to the bulk

extension direction (Fig. 10c), as in the numerical model.

With increase in inclination of the inclusion the magnitude

of opening in the fissures progressively decreases and at the

same time its area becomes large (Fig. 10d). We also carried

out experiments on inclusions of varying aspect ratios,

keeping all other conditions unchanged. The control of

aspect ratio was most reflected in the development of

fissures (Mode 1) around obliquely oriented inclusions.

When inclusions were oriented at an angle of 458 with the

extension direction, fissures had a tendency to die out with

increase in aspect ratio (compare Fig. 10c and e). The

theoretical result shows an inverse relation between the

tensile strength of the inclusion–matrix interface and the

aspect ratio of inclusion (Fig. 9b) when the inclusion is

obliquely oriented with respect to the bulk extension

direction. Thus, for a given mechanical strength Mode 1

detachment cannot take place if the aspect ratio is larger

than a critical value, as observed in the physical model

experiments. Similar experiments were conducted under

simple shear deformation (Fig. 11), the result of which also

agrees with the theoretical results, as can be revealed by

comparing them with numerical models (Figs. 6 and 7).

5. Discussion

In the study of the inclusion–matrix system, the

fundamental boundary condition that we need to deal with

is: whether the inclusion–matrix interface is coherent or

incoherent, as it has a significant control on the kinematic

behaviour of the inclusions (Mancktelow et al., 2002) as

well as the flow field around them (Pennacchioni et al.,

2000). Many workers have modelled the flow fields and

associated structures, such as porphyroclast tails, foliation

drag around rigid inclusions, imposing parameters as a

measure of degree of coherence between inclusion and

matrix (Bjornerud and Zhang, 1995). The present study

focuses mainly on the conditions under which the

inclusion–matrix interface becomes incoherent, and experi-

ences detachment. The results obtained from numerical

simulations clearly indicate that the detachment does not

Fig. 7. Detachment around elliptical inclusions in numerical models under simple shear. f is the initial inclination of the long axis of the inclusion to the bulk

shear direction. R ¼ 2.
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occur uniformly around an inclusion, but are localized in

particular domains involving three different modes. It

therefore seems inappropriate in defining the degree of

coherence using a single mathematical parameter, as

attempted in earlier work (e.g. Bjornerud and Zhang,

1995). This analysis provides a first-hand basis in defining

the detachment at the inclusion–matrix interface, which is

necessary to interpret the behaviour of inclusions and,

consequently, to use them as kinematic indicators in

deformed rocks.

The shape and orientation of inclusion are found to be the

most crucial parameters in determining the coherence to

incoherence transformation at the inclusion–matrix inter-

face. For a given strength, the interface becomes incoherent

when the inclusion has a critical aspect ratio (Fig. 9a).

Natural observation in mylonites shows that a deviation

from the theoretical behaviour (Jeffery, 1922) only occurs

for elongate inclusions with a critical aspect ratio.

Inclusions exceeding this aspect ratio stabilize to particular

positions. Our analysis confirms that detachment develops

preferentially at the interface of inclusions with large aspect

ratios under a specific orientation, affecting their kinematic

behaviour (Pennacchioni et al., 2001; Mancktelow et al.,

2002; ten Grotenhuis et al., 2002).

The analysis in this paper is based on several consider-

ations, which need to be addressed:

1. The detachment patterns have been demonstrated in

numerical models, considering the tensile strength To and

shear strength So of the inclusion–matrix interface

independently. The same analysis could be made

imposing a failure criterion. In this analysis, however,

we intentionally avoid using any particular failure

criteria, e.g. Coulomb–Navier criterion or Griffith’s

criterion, as they define the conditions of failure in a

single, continuous body. We are, however, sceptical

whether they are applicable to characterise the detach-

ment at the interface between two distinctly different

materials, i.e. rigid inclusion and ductile matrix. We

actually deal with the bonding strength between the

materials, the stress required to break the adherence

between the two materials. Now, one can break the bond

by applying critical shear or tensile stresses, what we

consider here as So and To. The interface will be on the

verge of developing fissures (Mode 1 detachment) where

the normal stresses exceed To. On the other hand, this

will have a tendency to show slip where the shear stresses

exceed So. However, the slip movement subsequently

depends on other factors, e.g. the frictional property of

the interface. This aspect has not been taken into

consideration because it is difficult to apply a friction

law, which is strictly valid on fractures in the brittle

regime. The pattern of Mode 2 detachment may be

Fig. 8. Calculated plots showing variations in the area of fissure (Mode 1), slip (Mode 2) detachment and intact interface around an inclusion with its initial

orientation f. Bulk deformation is in simple shear. R: aspect ratio. The area of Mode 3 is not shown here.
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different from those presented here, as it will depend

upon the normal stress component in case of frictional

condition.

2. The mechanical strengths of the interface have been

chosen arbitrarily as So ¼ To ¼ 1. This is merely to

demonstrate the disposition of three modes of detach-

ment around an inclusion more elegantly. In natural

conditions So and To may be different, giving rise to

different patterns of detachment. For example, when

So q To, inclusions will not develop Mode 2 detachment,

as evident from the field diagrams (Fig. 9). On the

contrary, the inclusion–matrix will be affected entirely

by Mode 1, giving rise to only fissure detachment. Thus,

there may be different combinations of detachment

around an inclusion depending upon different values of

So and To, which can be predicted from the field diagrams

of detachment (Fig. 9). However, the main aim in

presenting these numerical simulations is to illustrate

how an inclusion may experience detachment in different

modes and what may be the probable geometrical

disposition of the different modes on the inclusion–

matrix interface, and how they depend on the shape and

orientation of the inclusion.

3. In our analysis we deal with cases where the normal

stress acting at the inclusion–matrix interface is larger

than the confining pressure, and the effective normal

stress reaches the tensile strength of the interface, giving

rise to Mode 1 (fissure) detachment. It is evident from

Fig. 9. Variations of critical aspect ratios, delimiting the fields of no-detachment and Mode 1 and Mode 2 detachment, as a function of normalised values of

tensile strength (Tp
o ) and shear strength (Spo) of the inclusion–matrix interface, respectively. The deformation is under pure shear. f is the inclination of the long

axis of inclusion to the bulk extension direction.

Fig. 10. Matrix detachment around rigid inclusions in physical models under pure shear. Markers were drawn parallel to the direction of bulk shortening across

the inclusion–matrix boundary to reveal the detachment pattern. They developed drag patterns under the heterogeneous matrix flow around the inclusions (cf.

Mandal et al., 2001a). (a) Circular inclusion showing development of symmetrical fissures (Mode 1) along the central line parallel to the bulk extension

direction and slip detachment (Mode 2) on either side of the fissures. (b)–(d) Elliptical inclusions with aspect ratio R ¼ 2 and initial orientation f ¼ 0, 45 and

908, respectively. Note that in (c) the inclusion has rotated and lowered the inclination of its long axis with the bulk extension direction, and also that the fissure

(Mode 1 detachment) is located away from both the long axis of the inclusion and the central line parallel to extension direction. (e) Elongate inclusions with

aspect ratio R ¼ 3 and initial orientation f ¼ 458. Note that slip (Mode 2) is the dominant detachment mode at the inclusion–matrix interface and Mode 1

detachment is virtually absent.
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Fig. 11. Matrix detachment around rigid inclusions under simple (dextral) shear bulk deformation. (a) Circular inclusions showing Mode 1 fissures with maximum opening in the direction of 458 with the shear

direction and Mode 2 (slip) detachment. (b)–(d) Elliptical inclusions, initially oriented parallel (b), perpendicular (c) and at an angle of 1358 (d) with the shear direction. Note that the location of fissures (Mode 1

detachment) varies with change in inclusion orientation, and that slip (Mode 2) detachment becomes dominant when the inclusion is oriented parallel to the bulk shear direction.
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Eqs. (13) and (15) that the normal stress everywhere at

the interface will be compressive if the confining

pressure is very large, and is thus unlikely to form

Mode 1 detachment. This analysis is primarily aimed at

demonstrating the influence of inclusion geometry on the

detachment processes under a condition of confining

pressure allowing Mode 1 detachment. This is relevant to

natural inclusion–matrix systems, which generally show

a wide variation in the shape and orientation of

inclusions. Our analysis is applicable to explain the

variation in detachment pattern in such a system, where

the confining pressure can be considered as a constant

parameter.

There are some limitations in the present theoretical and

experimental approach. Firstly, the entire analysis is based

on two dimensions, considering that the axis of rotation

remains in coincidence with the axis of no-strain, which

may not always be so in the natural conditions. Secondly,

there are a number of simplistic assumptions in the analysis.

Numerical simulations consider ideally the displacement at

a point on the interface as a linear function of the stress

acting at that point. Similarly, the matrix is assumed to be

Newtonian, and mechanically isotropic during the defor-

mation. In natural conditions there may large departures

from these assumptions. Thirdly, the theoretical model is

valid for infinitesimal strain till the inclusion–matrix

interface becomes incoherent. This is not applicable in

tracking the detachment subsequently in the course of

progressive deformation.

6. Conclusions

1. The detachment at an inclusion–matrix interface may

occur in diverse modes: Mode 1—the matrix is separated

from the inclusion with displacement normal to the

inclusion boundary; Mode 2—the matrix slips on the

surface of the inclusion; and Mode 3—the detachment

occurs by a combination of the above two modes.

Besides the mechanical strength of the interface, other

physical factors controlling the modes of detachment and

their geometrical patterns are the aspect ratio and

orientation of the inclusion.

2. Circular inclusions (R ¼ 1) can show detachment if the

normalised values of the mechanical strength of the

interface is less than two. Under such conditions both

Mode 1 and Mode 2 detachment can occur, giving rise to

fissures along the central line parallel to the bulk

extension in the case of pure shear and along a line at

an angle of 458 with the shear direction in the case of

simple shear, and slip zones on either side of the fissures.

3. For given inclusion orientation (f ), the conditions for

detachment around elliptical inclusions are different for

different modes, and are functions of aspect ratio of the

inclusions. In pure shear deformation, when f ¼ 0 the

critical aspect ratio at which detachment can take place is

directly proportional to the mechanical strength of the

inclusion–matrix interface. On the other hand, this is

inversely proportional to the mechanical strength, when

f ¼ 458. For f . 458 the aspect ratio required for Mode

1 detachment is inversely proportional, whereas that for

Mode 2 is directly proportional to the mechanical

strength of the interface.

4. Irrespective of the orientation of inclusion, detachment is

unlikely to occur if the mechanical strength of the

interface normalised to the bulk flow stress is larger than

six and the aspect ratio is less than 10.
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